
Implementation	of	an	Intelligent	Agent	for	the	
Camel	Up!	Board	Game

Alec Gironda	&	Luke	Lorenz

The	goal	of	this	project	is	to	develop	an	intelligent	agent	for	the	board	game	
Camel	Up.	Using	reinforcement	learning	and	an	expectimax	algorithm,	our	
agent	should	be	able	to	determine	the	optimal	policy	at	each	game	state	and	
take	actions	accordingly.
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Methods

• Board	games	have	long	been	used	as	a	benchmarks	for	AI	progress,	
notably	those	with	imperfect	information	and	stochasticity.

• Camel	Up	contains	a	restricted	decision	space,	but	many probabilistic	
events,	making	it	a	novel	challenge	for	AI	development.

• While	a	probabilistic	AI	for	Camel	Up	has	been	developed,	we sought	to	
combine	reinforcement	learning	with	an expectimax algorithm to	push	
the	envelope	of	novel	AI	in	dynamic	board	game situations.

EV’s:	[0.740,	0.533,	0.566,	1.599,	1.06]
Figure	1.	1A is	the	board	state	before	we	take	our	turn.	We	decide	to	place	a	leg	bet	on	the red	camel.	1B shows	the	
agent's	decision	to	place	a	leg	bet	on	the	blue	camel.	The	decision	is	sensible:	blue	lies	on	top	of	two	camels	who	
have	yet	to	roll,	increasing	the	chance	of	blue	being	carried	forwards	while	retaining	position	over	those	below.	The
agent's	decision was	made	by	taking	the	maximum EV	of all	possible	leg	bets,	color	coded	and	shown	in	1C.	

EV’s:	[0.380,	0.606,	0.0,	0.0,	0.781]

• Our	final	AI	agent,	SmartPlayer, chooses	moves	based	on	the	current	state	
of	the	game	using	a	combination	of	a	neural	network	and	an	expectimax	
algorithm.

• We	calculated	the	expected	values	(EV)	of	leg	bets	and	made	moves based	
on	the	highest	EVs	across	the	leg	bets.

• When	each	leg	bet's	EV	was	less	than	the	EV	to	roll	a	die,	1,	the neural	
network	predicted	if	betting	on	a	final	winner	or	rolling	a	die would	be	
more	advantageous.

• We	trained	the	neural	network	for SmartPlayer on	100	simulated games	
between RandomPlayer (takes	moves	at	random),	and MaxPlayer (only	
uses expectimax),	and	observed	actions	through	a pygame interface.

Gameplay
• 2	players	bet	on	five	racing	camels. The	player	with	the	most	money	at	the	

end	of	the	race	wins.	The	race	ends	when	any	camel	returns to	the	start.

• There	are	5	colored	dice—one	for	each	camel.	Rolled	dice	move	the	
corresponding camel	and	any	on	top	of	it.

• If	a	camel	lands	on	an	occupied	space,	it stacks	on	top	of	the	camels	
already	on	the space.

• The	furthest	camel	leads,	with	ties	resolved	by	tallest	height.

• Each	turn,	the	player	chooses	to	either	randomly	roll	one	of	the	remaining	
dice,	bet on	a	leg winner,	or	bet	on	a	race	winner/loser.	If	a	die	color	is	
rolled,	it	can't	be	rolled again.

• A	race	'leg'	ends	when	all	five	dice	have	been rolled.	Then,	a	new	leg	
starts, clearing all	leg	bets	and returning	all dice	to	the shaker.

• Rolling	a	die	pays	1	coin,	betting	on	an	overall	winner/loser	pays	8	or	5	
coins,	and leg	bets	pay	5,	3,	or	2	coins.	The	earlier	a	bet	is	placed,	the	
higher	it	pays.

• At	the	end	of	each	leg,	correctly	placed	leg	bets	pay	out.	Correct overall	
winner	and loser	bets	pay	out	at	the	end	of	the	race.

Figure	3.	Results of	100	simulated	games	between	various	
agents and	RandomPlayer.	Agents	are	briefly	described in	
Methods	and	further	described	in	Abstract	Table	1.
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Figure	2.	2A is the	board	state	before	we	take	our	turn.	We	decided	to	place	a	leg	bet	on	the yellow	camel.	Now,	it	
is the	agent's	turn. 2B shows	the	agent's decision	to	roll. It	rolled	a	3	on	the	red	die,	moving	the	red camel	3	spaces.	
The	agent	chose	to	roll	because	none	of	the	EVs	of	leg	bets	in	2Cwere	greater	than	1,	and	the	agent's	neural	network	
predicted	that	the	EV	of	rolling	was	greater	than	the	EV	of	placing	an	overall	winner/loser	bet	at	this	time.
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• We	simulated	games	with	RandomPlayer,	MaxPlayer,	and	SmartPlayer
against	a	RandomPlayer.	Based	on	wins	and	losses	over	100	games	for	
each	matchup,	SmartPlayer outperformed	MaxPlayer,	and	MaxPlayer
outperformed	RandomPlayer.	Figure	3	displays	these	results.

• Prioritizing	leg	bets	is	advantageous,	for	correct	leg	bets	allow	a	player	
to	quickly	accumulate	large	sums	of	money.	MaxPlayer and	SmartPlayer
took	advantage	of	this,	hence	their	dominance	over	RandomPlayer.

• Betting	on	an	overall	winner/loser	before	the	other	player	is	more	
advantageous	than	rolling,	early	in	the	game.	SmartPlayer often	did	this,	
hence	SmartPlayer's dominance	over	MaxPlayer.

• A	strategic	flaw	in	our	agent	is	that	it	takes	bets	to	maximize	payout	
when	it's	already	winning	by	a	large	margin.	This	gives	the	other	player	
opportunities	to	win	bets	and	close	that	margin.	Instead,	our	agent	
should	roll	to	try	to	end	the	game	sooner.

• Future	research	extensions	involve	expanding	the	game	to	4	players,	
adding	other	game	mechanics,	and	addressing	this	strategic	flaw.

• We	view	this	early	demonstration	as	a	stepping-stone	for	advanced	
machine	learning	techniques	for	even	more	complex	board	games	in	
future	research.
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